Nox2/ROS-dependent human antigen R translocation contributes to TNF-α-induced SOCS-3 expression in human tracheal smooth muscle cells.
نویسندگان
چکیده
Elevated levels of TNF-α have been detected in the airway fluids, which may induce upregulation of inflammatory proteins. Suppressors of cytokine signaling (SOCS)-3 proteins can be induced by various cytokines and negatively regulated inflammatory responses. Although TNF-α has been shown to induce SOCS-3 expression, the mechanisms underlying TNF-α-induced SOCS-3 expression in human tracheal smooth muscle cells (HTSMCs) remain unclear. Here, we showed that TNF-α induced SOCS-3 expression, which was inhibited by pretreatment with the inhibitor of transcription level (actinomycin D), translation level (cycloheximide), JNK1/2 (SP600125), MEK1/2 (U0126), NADPH oxidase (Nox; apocynin and diphenyleneiodonium chloride), or reactive oxygen species (ROS; N-acetyl-l-cysteine) and transfection with siRNA of JNK1, p47(phox), p42, Nox2, or human antigen R (HuR). In addition, TNF-α-stimulated JNK1/2 and p42/p44 MAPK phosphorylation, Nox activation, and ROS generation were inhibited by pretreatment with U0126 or SP600125 and transfection with siRNA of JNK1 or p42. We further showed that TNF-α markedly induced HuR protein expression and translocation from the nucleus to the cytosol, which could stabilize SOCS-3 mRNA. Moreover, TNF-α-enhanced HuR translocation was reduced by transfection with siRNA of p42, JNK1, or p47(phox). These results suggested that TNF-α induces SOCS-3 protein expression and mRNA stabilization via a TNFR1/JNK1/2, p42/p44 MAPK/Nox2/ROS-dependent HuR signaling in HTSMCs. Lipopolysaccharide (LPS) has been shown to play a key role in inflammation via induction of adhesion molecules and then causes airway and lung injury. Moreover, we also demonstrated that overexpression of SOCS-3 protects against LPS-induced adhesion molecules expression and airway inflammation.
منابع مشابه
Nox2 and Nox4 mediate tumour necrosis factor-α-induced ventricular remodelling in mice
Reactive oxygen species (ROS) and pro-inflammatory cytokines are crucial in ventricular remodelling, such as inflammation-associated myocarditis. We previously reported that tumour necrosis factor-α (TNF-α)-induced ROS in human aortic smooth muscle cells is mediated by NADPH oxidase subunit Nox4. In this study, we investigated whether TNF-α-induced ventricular remodelling was mediated by Nox2 a...
متن کاملTNF--induced Suppressor of cytokine signaling-3 (SOCS-3) protein expression mediated through the JNK1/2, ERK1/2/NADPH oxidase/AP-1 in Human tracheal smooth muscle cells
Suppressor of cytokine signaling-3 (SOCS-3) is an intracellular protein that involved in a wide range of biological processes. Recently, more and more study indicated that SOCS-3 not only can down-regulate the cytokine stimulated signaling, but also can anti-inflammatory response. However, whether cytokine can induce the expression of SOCS-3 and the mechanism in airway is still unclear. Here, w...
متن کاملThe Pro-Resolving Lipid Mediator Maresin 1 (MaR1) Attenuates Inflammatory Signaling Pathways in Vascular Smooth Muscle and Endothelial Cells
OBJECTIVE Inflammation and its resolution are central to vascular injury and repair. Maresins comprise a new family of bioactive lipid mediators synthesized from docosahexaenoic acid, an ω-3 polyunsaturated fatty acid. They have been found to exert anti-inflammatory and pro-resolving responses in macrophages, neutrophils and bronchial epithelial cells and impart beneficial actions in murine mod...
متن کاملReactive oxygen species mediate TNF-α-induced inflammatory response in bone marrow mesenchymal cells
Objective(s): It is generally believed that the inflammatory response in bone marrow mesenchymal stem cells (BMSCs) transplantation leads to poor survival and unsatisfactory effects, and is mainly mediated by cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α). In this study, we explored the mechanisms underlying the TNF-α-induced inflammatory ...
متن کاملSalusin-β induces foam cell formation and monocyte adhesion in human vascular smooth muscle cells via miR155/NOX2/NFκB pathway
Vascular smooth muscle cells (VSMCs) are indispensible components in foam cell formation. Salusin-β is a stimulator in the progression of atherosclerosis. Here, we showed that salusin-β increased foam cell formation evidenced by accumulation of lipid droplets and intracellular cholesterol content, and promoted monocyte adhesion in human VSMCs. Salusin-β increased the expressions and activity of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 306 6 شماره
صفحات -
تاریخ انتشار 2014